perm filename TRY.TEX[TEX,DEK]4 blob
sn#381022 filedate 1978-09-17 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 \input acphdr
C00006 00003
C00007 ENDMK
C⊗;
\input acphdr
\ninepoint
\noindent
Noting that the continuant $Q↓4(x↓1,x↓2,x↓3,x↓4)=x↓1x↓2x↓3x↓4
+x↓1x↓2+x↓1x↓4+x↓3x↓4+1$, find and prove a simple relation between
$Q↓n(x↓1, \ldotss , x↓n)$ and Morse code sequences of length\penalty 1000\
$n$.\xskip (b) (L. Euler, {\sl Novi Comm.\ Acad.\ Sci.\ Pet.\ \bf 9}
(1762), 53--69.)\xskip Prove that $$\twoline{Q↓{m+n}(x↓1, \ldotss , x↓{m+n})
= Q↓m(x↓1, \ldotss , x↓m)Q↓n(x↓{m+1}, \ldotss , x↓{m+n})}{2pt}{\null + Q↓{m-1}(x↓1,
\ldotss , x↓{m-1})Q↓{n-1}(x↓{m+2}, \ldotss , x↓{m+n}).}$$